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Abstract The transformation of flexural gravity waves due to wave scattering by heterogeneous boundaries is
investigated under the assumption of the linearized water-wave theory. The heterogeneous boundaries include
step-type bottom topography as well as heterogeneity in the material property of a floating ice-sheet. By apply-
ing the generalized expansion formulae along with the corresponding orthogonal mode-coupling relations, the
boundary-value problem (BVP) is reduced to linear system of algebraic equations. The system of equations is
solved numerically to determine the full solution of the problem under consideration. Energy relations are derived
and used to check the accuracy of the computational results of the scattering problem. Explicit relations for the
shoaling and scattering coefficients due to the change in water depth and heterogeneous ice-sheet are derived. These
derivations are based on the law of conservation of energy flux under the assumptions of the linearized shallow-water
theory. The change in water depth and the structural characteristics of the medium significantly contribute to the
change in the scattering and shoaling coefficients and the deflection of the structure. The present results are likely
to play a significant role in the analysis of flexural gravity-wave propagation in problems of variable topography
for which a direct computational approach is being utilized.

Keywords Flexural gravity waves · Reflection and transmission coefficients ·
Shallow-water approximations · Variable topography

1 Introduction

The study on wave interaction with floating ice sheets was started by Greenhill [1]. However, major scientific
investigations on various issues regarding Antarctica has significantly progressed world-wide since 1957/1958, the
International Geophysical Year. Wave–ice interactions are very important in the Marginal Ice Zones (MIZ) since
the waves cause fractures in the continuous ice. Simultaneously, the region of broken ice scatters wave energy
protecting the interior of the ice from further wave-induced fracture. In the Antarctic regions, as the wave from
the open ocean penetrates into the ice shelf, it experiences an impedance change due to the flexural properties of
the structure. In addition, there are several irregularities in the medium such as the ice leads being either open or
refrozen, pressure ridges and certain physical and mechanical changes in the properties of the sea ice. In addition, the
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ice-covered regions are often extended up to continental shelves in the polar regions where topographic variation is
often observed. These irregularities result in altering the dispersion relation and hence transformation of the waves
takes place below the ice sheet [2].

The recent interest in ocean-wave interaction with large floating structures is largely due to the growing impor-
tance to utilize the ocean space for various humanitarian activities and military operations. The construction of
floating airports, floating cities, floating army bases, etc. has advantages over the conventional land-reclamation
processes. These structures are easy to construct, handle and remove, and has little environmental impact on the
country and the neighboring countries’ coastline and the marine eco-system. In general, the thickness of these
kinds of structures is negligible (<10 m) compared to the length of the structures (in the order of kilometers). In the
literature, these floating ice sheets and the large floating structures are modelled as thin floating elastic plates. Thus,
the thin-plate model of Euler–Bernoulli is in general used for the structural parts in the mathematical formulation
of the BVP. Because of the commonality of the two classes of problems, the study on wave interaction with large
floating structures plays a vital role in both Marine technology and Arctic engineering.

Interaction of surface gravity waves with flexible floating structures gives rise to the flexural gravity waves. This
branch is well studied in homogeneous fluid media having uniform water depth. Various analytical and numerical
methods are being developed in the literature to handle such problems. Most of these works can be found in the
classical works presented [3–6] and the literature cited therein. In addition, the significant progress in the literature
on wave interaction with flexible floating structures in homogeneous fluid and structural medium in the case of
uniform water depth is reviewed by Watanabe et al. [7] and Chen et al. [8]. However, most of these floating flexible
structures are constructed near the offshore region, where the bottom topography is usually uneven. Often it is
difficult to find vast areas having flat sea bed in the coastal region where large floating structures are being con-
structed. Further, the concept of flexural gravity-wave propagation over heterogeneous boundaries is an important
phenomenon in the continental shelf in the two polar regions. In this context it is important to analyze the behavior
of flexural gravity waves with change in bottom topography and heterogeneity in structural medium.

The topographic variation is very common in most of the ocean-wave propagation problems. Even for the sim-
plest of such problems, like wave scattering by a sudden change in bottom topography, one has to take recourse to
approximate solutions. In the last few decades, significant progress has been made in the literature to develop vari-
ous approximate solution approaches. Newman [9] presented theoretical and experimental results for free-surface
gravity-wave scattering by an infinite step and various other cases are well described in [10, Sect. 2.6]. To deal
with wave scattering by variable topography, one of the most widely used methods is based on the mild-slope
approximation developed by Berkhoff [11]. Rhee [12,13] analyzed the scattering of surface gravity waves by step-
wise obstacles. Ehrenmark [14] analyzed the classical problem of oblique-wave incidence on a plane beach by
the application of integral transforms. Most of these studies are related to surface gravity waves. On the other
hand, recent emphasis on flexural gravity waves is on problems involving heterogeneous boundaries. Sturova [15]
analyzed the deflection of floating flexible platforms in shallow water. Wang and Meylan [16] presented a solution
for the linear wave forcing of a floating thin elastic plate on water of variable depth by the combined application of
boundary-element and integral-equation methods. Andrianov and Hermans [17] discussed the influence of water
depth on the hydro-elastic response of very large floating structures. They obtained the results for the reflection and
transmission coefficients by analyzing an integro-differential equation. Recently, Williams and Squire [2,18] ana-
lyzed scattering due to a change in structural characteristics of a floating structure. Porter and Porter [19] analyzed
the effect of a change in water depth and thickness of a structure based on mild-slope approximations. Belibassakis
and Athanassoulis [20] performed a hydro-elastic analysis of large floating platforms over variable bathymetry by
a coupled-mode method.

In the present paper, the scattering of flexural gravity waves by an abrupt change in water depth and structural
heterogeneity is analyzed for water of finite depth. The analysis is based on the expansion formulae and the orthog-
onal mode-coupling relations developed by Manam et al. [6] which is equivalent to that developed by Lawrie and
Abrahams [21]. However, an alternate and straightforward derivation of the expansion formula for finite depth is
given in Appendix by a suitable application of the Fourier-sine transform technique and Cauchy integral theorem
of complex-function theory. The energy relation associated with flexural gravity-wave scattering is derived by two
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Fig. 1 Schematic diagram

alternate approaches. Using linearized shallow-water theory, we derive explicit expressions for the reflection and
transmission coefficients considering continuity of the surface elevation and the law of conservation of energy flux.
Explicit relations for shoaling coefficients are also obtained based on the law of conservation of energy flux. Simple
numerical computations are performed to analyze the hydro-elastic response of floating flexible structures over
uneven bottom topography and change in material characteristics of the structure.

2 Wave transformation by heterogeneous boundaries

Transformation of flexural gravity waves takes place due to various physical processes which have an adverse effect
on the wave characteristics and the associated floating structure. In the context of the present study, emphasis is
put on wave transformation due to the change in bottom topography, thickness and rigidity of the floating structure.
The floating structure is considered as a large floating ice sheet and the problem is analyzed in a two-dimensional
Cartesian co-ordinate system.

2.1 The general boundary-value problem

In the present subsection, the general BVP is formulated under the assumption of the linearized water-wave
theory. The floating ice sheet is modeled as an Euler–Bernoulli beam equation. The fluid is assumed to occupy
the regions 0 < x < ∞, 0 < y < h1 (referred as region 1) and −∞ < x < 0, 0 < y < h2 (referred as
region 2). We consider an infinite ice-sheet floating on the upper surface of the fluid. The ice-sheet is given an
abrupt change in the constituent ice-material from E1 I1 to E2 I2 and water depth from h1 to h2 at x = 0 as in Fig. 1.
We assume that the fluid is inviscid, incompressible and that the motion is irrotational and simply harmonic in time
with angular frequency ω. These assumptions ensure the existence of a velocity potential �j (x, y, t) of the form
�j (x, y, t) = Re{φ j (x, y)e−iωt }. Further, it is assumed that the deflection of the ice-sheet is simple harmonic in
time with frequency ω which gives rise to the ice deflection ζ j (x, t) of the form ζ j (x, t) = Re{η j (x)e−iωt }. Thus,
the spatial velocity potential φ j (x, y) satisfies the Laplace equation as given by

∇2φ j = 0 in the fluid domain. (1)

The linearized kinematic and dynamic boundary conditions in the j th region on the mean free surface y = 0 are
given by

∂φ j

∂y
+ iωη j = 0, (2)

ω2ρ j d jη j = E j I j
∂4η j

∂x4 + Pj (x, 0), (3)

where the pressure is obtained from Bernoulli’s equation as

Pj = iρωφ j + ρgη j . (4)
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Combining the kinematic and dynamic boundary conditions (2–4), we obtain the boundary condition on the ice-
covered mean free surface y = 0 as(

c j0 + c j1
∂4

∂x4

)
∂φ j

∂y
+ d j0φ j = 0 on y = 0, (5)

with c j0 = 1, c j1 = E j I j/{ρg − ρ j d jω
2}, d j0 = ρω2/{ρg − ρ j d jω

2}, I j = d3
j /12(1 − ν2

j ), E j = Young’s
modulus, ν j = Poisson’s ratio, ρ = density of water, ρ j = density of the ice-sheet, g = acceleration due to gravity
and d j = thickness of the ice-sheet. The bottom boundary condition for this case becomes

∂φ

∂n
= 0 on {y = h2,−∞ < x < 0} ∪ {y = h1, 0 < x < ∞} ∪ {x = 0, h2 < y < h1}, (6)

where n is the outward-drawn normal to the bottom boundary. Finally, the general form of the far-field condition is

φ1(x, y) ∼ cosh k10(h1 − y)

cosh k10h1
{a11e−ik10x + a12eik10x } as x → ∞

φ2(x, y) ∼ cosh k20(h2 − y)

cosh k20h2
{a21e−ik20x + a22eik20x } as x → −∞,

(7)

with al j , l, j = 1, 2 being the far-field wave amplitudes which depend upon the nature of the physical problem
under consideration. The roots k j0, j = 1, 2 are real and positive and satisfy the dispersion relations

d j0 = (c j1k4
j0 + c j0)k j0 tanh k j0h j , j = 1, 2. (8)

2.2 Wave scattering due to heterogeneous boundaries

In case of wave scattering due to an abrupt change in bottom topography (often referred to as a step) and material
properties of the structure as in Fig. 1, φ j (x, y) with j = 1, 2 satisfy Eq. (1). In addition, it satisfies the boundary
conditions (2–7) with a11 = 1, a12 = R0, a21 = T0 and a22 = 0 in (7). Here, R0 and T0 are associated with the
amplitude of the reflected and transmitted waves. The continuity of velocity and pressure at the interface x = 0
yields

φ2x (0, y) = φ1x (0, y), φ2(0, y) = φ1(0, y), in 0 < y < h2. (9)

Near the edge of the two interface points (0±, 0) at the mean free surface, it is assumed that the plate deflection,
slope of deflection, bending moment and shear force are continuous, which yield

φ1y(0+, 0) = φ2y(0−, 0) = α1 (say), φ1xy(0+, 0) = φ2xy(0−, 0) = α2 (say),

E1 I1φ1yyy(0+, 0) = E2 I2φ2yyy(0−, 0) = α3 (say), E1 I1φ1xyyy(0+, 0) = E2 I2φ2xyyy(0−, 0) = α4 (say).

(10)

Using the expansion formula for the flexural gravity wavemaker problem as in [6] (An alternate straightforward
derivation of a generalized expansion will be discussed in Appendix), the φ j , j = 1, 2 are expanded as

φ1(x, y) = (e−ik10x + R0eik10x ) f10(y)+
I I∑

n=I

Rneiεnk1n x f1n(y)+
∞∑

n=1

Rne−k1n x f1n(y), x > 0,

φ2(x, y) = T0e−ik20x f20(y)+
I I∑

n=I

Tne−iεnk2n x f2n(y)+
∞∑

n=1

Tnek2n x f2n(y), x < 0,

(11)

where R0, T0, Rn, Tn, n = I, I I, 1, 2, . . ., are unknown constants to be determined, εn = 1 for n = I, 0, 1, 2, . . .
and εI I = −1. The eigenfunctions f jn are given by

f jn(y) = cosh k jn(h j − y)

cosh k jnh j
, n = 0, I, I I and f jn(y) = cos k jn(h j − y)

cos k jnh j
, n = 1, 2 . . . (12)

with the eigenvalues k jn’s satisfying the dispersion relation
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d j0 = (c j1k4
jn + c j0)k jn tanh k jnh j , n = 0, I, I I (13)

and k jn = ik jn for n = 1, 2, 3, . . .. The dispersion relation for each j = 1, 2 in (13) has one real positive root
k j0, four complex roots k jn, n = I, I I, . . . , I V in the four quadrants and an infinite number of purely imagi-
nary roots k jn, n = 1, 2, . . . . In our study, we have considered the two complex roots with positive real parts for
the sake of boundedness of the solution. The terms containing the other complex roots do not contribute to the
solution. Further, the eigenfunctions f jn(y) satisfy the orthogonal mode-coupling relation as given in [6] or as in
Appendix:

〈 f jm, f jn〉 =
∫ h j

0
f jm f jndy + c j1

d j0

{
f ′′′

jm(0) f ′
jn(0)+ f ′

jm(0) f ′′′
jn(0)

}
, (14)

which satisfies,

〈 f jm, f jn〉 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for m 	= n,
2k jnh j (c j0 + c j1k4

jn)+ (c j0 + 5c j1k4
jn) sinh 2k jnh j

4k jn(c j0 + c j1k4
jn) cosh2 k jnh j

for m = n = 0, I, I I,

2k jnh j (c j0 + c j1k4
jn)+ (c j0 + 5c j1k4

jn) sin 2k jnh j

4k jn(c j0 + c j1k4
jn) cos2 k jnh j

for m = n = 1, 2 . . . .

.

In order to determine the unknown coefficients, the above mode-coupling relation is applied to φ2(0, y) and f2m(y)
along with the continuity of pressure across the vertical interface x = 0, 0 < y < h2. Thus, from the second
condition of (9) and the relation (14), we obtain

〈φ2(0, y), f2m(y)〉 =
∫ h2

0
φ2(0, y) f2m(y)dy + c21

d20

{
φ2yyy(0, 0) f ′

2m(0)+ φ2y(0, 0) f ′′′
2m(0)

}

=
∫ h2

0
φ1(0, y) f2m(y)dy + c21

d20

{
α3

E2 I2
f ′
2m(0)+ α1 f ′′′

2m(0)

}
(15)

for m = 0, I, I I, 1, 2, . . . . Using relation (11) in (15), we further obtain

R0

∫ h2

0
f10(y) f2m(y)dy +

I I∑
n=I

Rn

∫ h2

0
f1n(y) f2m(y)dy +

∞∑
n=1

Rn

∫ h2

0
f1n(y) f2m(y)dy

−Tm〈 f2m(y), f2m(y)〉 − α1
k3

2mc21

d20
tanh k2mh2 − α3

k2mc21

E2 I2d20
tanh k2mh2 = −

∫ h2

0
f10(y) f2m(y)dy. (16)

Once again, we apply the mode-coupling relation to φ1x (0, y) and f1m(y) along with the continuity of the horizontal
velocity across x = 0, 0 < y < h2 and the condition of zero horizontal velocity on x = 0, h2 < y < h1. Thus,
from (6), along with the first condition of (9) and the relation (14), we obtain

〈φ1x (0, y), f1m(y)〉 =
∫ h1

0
φ1x (0, y) f1m(y)dy + c11

d10

{
φ1xyyy(0, 0) f ′

1m(0)+ φ1xy(0, 0) f ′′′
1m(0)

}

=
∫ h2

0
φ2x (0, y) f1m(y)dy + c11

d10

{
α4

E1 I1
f ′
1m(0)+ α2 f ′′′

1m(0)

}
(17)

for m = 0, I, I I, 1, 2, . . . . Using relation (11) in (17), we further obtain

iεmk1m Rm〈 f1m(y), f1m(y)〉 + ik20T0

∫ h2

0
f20(y) f1m(y) dy +

I I∑
n=I

ik2nεnTn

∫ h2

0
f2n(y) f1m(y) dy

−
∞∑

n=1

k2nTn

∫ h2

0
f2n(y) f1m(y)dy + α2

k3
1mc11

d10
tanh k1mh1 + α4

k1mc11

E1 I1d10
tanh k1mh1 = δm (18)

where

δm =
{

ik1m〈 f1m(y), f1m(y)〉 for m = 0,
0 for m = I, I I, 1, 2 . . .
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and εn is same as defined earlier. Truncating the infinite series up to N terms, from (16) and (18), we obtain a
linear system of (2N + 6) equations. Utilizing the continuity conditions for the plate deflection, slope of deflection,
bending moment and shear forces at the origin, from (10) and (11) we obtain

T0k20 tanh k20h2 +
I I∑

n=I

Tnk2n tanh k2nh2 −
∞∑

n=1

Tnk2n tan k2nh2 + α1 = 0, (19a)

T0ik2
20 tanh k20h2 +

I I∑
n=I

Tniεnk2
2n tanh k2nh2 +

∞∑
n=1

Tnk2
2n tan k2nh2 − α2 = 0, (19b)

T0k3
20 tanh k20h2 +

I I∑
n=I

Tnk3
2n tanh k2nh2 +

∞∑
n=1

Tnk3
2n tan k2nh2 + α3

E2 I2
= 0, (19c)

T0ik4
20 tanh k20h2 +

I I∑
n=I

Tniεnk4
2n tanh k2nh2 −

∞∑
n=1

Tnk4
2n tan k2nh2 − α4

E2 I2
= 0. (19d)

The above relations give four more equations in terms of α1, α2, α3, and α4. Thus, we have obtained a system of
(2N + 10) equations for the determination of (2N + 10) unknowns as given by R0, RI , RI I , R1, . . . , Rn , T0, TI ,
TI I , T1, . . . , Tn , α1, α2, α3, and α4. The determination of the unknowns will in turn provide the velocity potentials
in the respective fluid regions. Thus, the reflection and transmission coefficients Kr and Kt which are defined as

Kr = |R0| and Kt =
∣∣∣∣k20 tanh k20h2

k10 tanh k10h1
T0

∣∣∣∣ , (20)

are obtained once R0 and T0 have been computed. In the next subsection, the wave-energy relation for flexural
gravity waves is derived for the scattering problem at hand.

2.3 Energy density and law of conservation of energy flux

Unlike the case of gravity waves, the average total flexural gravity-wave energy per unit surface area is the sum of
average potential energy, kinetic energy and surface energy. In the present context, the surface energy is generated
due to the deflection of the floating ice-sheet against the flexural rigidity of the ice-sheet. It is the same as the strain
energy for an elastic plate (see [22, Sect. 4.2]). For a plane flexural gravity-wave profile ζ(x, t) = Re

{ H
2 ei(kx−ωt)

}
,

the average potential energy V , kinetic energy T and the surface energy S over one wave length are given by

V = 1

L

∫ x+L

x
ρg(h + ζ )

(h + ζ )

2
dx = 1

16
ρgH2, (21)

T = 1

L

∫ x+L

x

∫ h

−η
1

2
ρ

[(
∂�

∂x

)2

+
(
∂�

∂y

)2
]

dxdy + ρiced

2L

∫ x+L

x

(
∂ζ

∂t

)2

dx = 1

16
H2(E I k4 + ρg), (22)

and

S = E I

2L

∫ x+L

x

(
∂2ζ

∂x2

)2

dx = 1

16
H2 E I k4, (23)

where the velocity potential �(x, y, t) is given by

�(x, y, t) = Re

{
iHg(E I k4 + ρg − ρicedω2)

2ω

cosh k(h − y)

cosh kh
ei(kx−ωt)

}
(24)
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with ρice being the density of the ice-sheet; d is the thickness of the ice-sheet, h is the finite water depth, H is the
wave height and L is the wave length. Thus, the total energy density for flexural gravity waves is given by

E = V + T + S = 1

8
H2(E I k4 + ρg). (25)

Now, the average energy flux F over a time period is obtained as the product of the group velocity cg and energy
density E , which yields

F = Ecg, (26)

where the group velocity cg is given by

cg = nc, (27)

with

n = 1

2

{
5E I k4 + ρg − ρicedω2

E I k4 + ρg
+ E I k4 + ρg − ρicedω2

E I k4 + ρg

2kh

sinh 2kh

}
, c =

√
(E I k4 + ρg) tanh kh

k(ρ + ρicedk tanh kh)
.

Next, we will derive the energy relation associated with the scattering of flexural gravity waves as in Sect. 2.2.
Using conditions (2) and (7), we can derive that the surface displacement ζ j (x, t) satisfies

ζ1(x, t) ∼ H11

2
e−i(k10x+ωt) + H12

2
ei(k10x−ωt) as x → ∞,

ζ2(x, t) ∼ H21

2
e−i(k20x+ωt) as x → −∞.

(28)

where the wave amplitudes Hl j are related to al j by the relation al j = {i(El Ilk4
l0 + ρg − ρldlω

2)Hl j } /{2ρω} for
l, j = 1, 2. Utilizing the law of conservation of energy flux as given by

∇{Ecg} = 0, (29)

from Eq. (28), we derive the energy relation as

1 − K 2
r = γ K 2

t (30)

where

γ = k10 sinh 2k10h1

k20 sinh 2k20h2

(ρg − ρ2d2ω
2 + E2 I2k4

20)2k20h2 + (ρg − ρ2d2ω
2 + 5E2 I2k4

20) sinh 2k20h2

(ρg − ρ1d1ω2 + E1 I1k4
10)2k10h1 + (ρg − ρ1d1ω2 + 5E1 I1k4

10) sinh 2k10h1
. (31)

The energy relation (30) is derived in an alternate manner by applying Green’s identity on φ and its complex
conjugate φ̄ (as in [3]), which yields∮

C

(
φ
∂φ̄

∂n
− φ̄

∂φ

∂n

)
= 0. (32)

In Eq. (32), C is the closed contour which consist of the horizontal upper surface (−∞ < x < ∞; y = 0),
two vertical boundaries (0 < y < h2; x → −∞) and (0 < y < h1; x → ∞) and the rigid bottom boundary
{−∞ < x < 0; y = h2} ∪ {x = 0; h2 < y < h1} ∪ {0 < x < ∞; y = h1}. This alternate derivation also justifies
the surface-energy term in the definition of total energy density. It may be noted that the kinetic-energy density
is equal to the sum of the surface-energy density and the potential-energy density. The strain energy for flexural
gravity waves is similar to the surface energy for capillary gravity waves (see [23, Sect. 15]).

3 Wave transformation based on shallow-water theory

In the context of the present paper, we will investigate the effect of shoaling and reflection due to changes in water
depth and heterogeneity in the floating ice-sheet. The analysis is based on the law of conservation of energy flux
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and pressure continuity at the interface. Under the assumption of the linearised shallow-water theory, the surface
elevation and the velocity potential are related by the equation

∂η

∂t
= h

∂2φ

∂x2 . (33)

Combining Eqs. (3), (4), and (33) and neglecting the modified ice-draft term δ j = ρ j d j/ρ, we obtain the linearized
long flexural gravity wave equation as [15]

D j
∂6φ j

∂x6 + ∂2φ j

∂x2 = − ω2

gh j
φ j , (34)

where D j = E j I j/ρg. The general form of the far-field behavior of a long flexural gravity wave is given by (28)
(see [10, Sect. 2.6]). The eigenvalues k j0 in (28) are the positive real roots of the shallow-water flexural gravity-wave
dispersion relation

(D j k
4
j0 + 1)k2

j0 = ω2

gh j
. (35)

Apart from the positive real root, Eq. (35) has a negative real root and four complex roots. In the context of the
present paper, we have given emphasis on the wave motion due to plane flexural gravity waves under shallow-water
approximations. The wave heights Hl j , l = j = 1, 2 in relation (28) depend on the type of physical problem under
consideration. From (35), the phase and the group velocities c j and cg j in case of shallow water are derived as

c j =
√
(D j k4

j0 + 1)gh j , cg j = n j c j , n j = (3D j k4
j0 + 1)/(D j k4

j0 + 1). Next, we will discuss the two cases of

shoaling and reflection separately.

3.1 Case 1

In this case, we will assume that the wave is propagating from a region of uniform depth h1 to a region of depth h2

without any reflection and refraction. Then, the far-field behavior in relation (28) is satisfied with H12 = 0. Thus,
the energy relation (30) yields

H21

H11
=

⎧⎨
⎩

1 + 3D1k4
10

1 + 3D2k4
20

√
(1 + D1k4

10)h1√
(1 + D2k4

20)h2

⎫⎬
⎭

1
2

. (36)

This process is referred to as wave shoaling and the relation (36) will give the shoaling coefficient for plane flexural
gravity waves. Relation (36) is the generalization of Green’s law (as in [24, p. 138] for free-surface gravity waves)
for flexural gravity waves.

3.2 Case 2

In this case we will consider the scattering of shallow-water waves due to a change in water depth. Thus, the general
far-field condition (28) is satisfied and the energy relation as in (30) is satisfied with γ given by

γ = k10

k20

1 + 3D2k4
20

1 + 3D1k4
10

, (37)

where Kr = H12/H11, Kt = H21/H11. The continuity of the surface elevation at the point of heterogeneity at
x = 0 yields

1 + Kr = Kt . (38)
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Combining Eqs. (30) and (38) with γ as in (37), we obtain the reflection and transmission coefficients for flexural
gravity waves in shallow water as follows:

Kr =
1 − 1 + 3D2k4

20

1 + 3D1k4
10

√
(1 + D2k4

20)h2√
(1 + D1k4

10)h1

1 + 1 + 3D2k4
20

1 + 3D1k4
10

√
(1 + D2k4

20)h2√
(1 + D1k4

10)h1

, Kt = 2

1 + 1 + 3D2k4
20

1 + 3D1k4
10

√
(1 + D2k4

20)h2√
(1 + D1k4

10)h1

. (39)

Here, it is observed that for h1 > h2 in the shallow-water approximation, Kr → 1 and Kt → 2. This case refers to
the pure standing wave in region 1 and the transmitted wave is also a standing wave of the same wave height. On the
other hand, the wave-height ratio in the case of no reflection as in (36) is due to the propagation of the progressive
wave only (see [24, p. 144] for a comparison with the gravity-wave relation).

4 Numerical results and discussion

In the present context, the reflection and transmission coefficients are computed and analyzed with E j = 5 GPa,
ρ = 1025.0 kg m−3, ρ j = 922.5 kg m−3, g = 9.81 m s−2, and ν = 0.3. In addition, the deflection of the ice-sheet ζ
is computed and analyzed for several cases with ωt = 0. For the purpose of computating Kr and Kt , the number of
evanescent modes N is taken as 5. The conservation of wave energy for different cases is illustrated from the energy
relation (30) in three different tables apart from the various computational results for Kr and Kt (Tables 1–3).

Figure 2 shows the variation of the reflection and transmission coefficients Kr and Kt versus the wave period T
for different values of depth ratio h2/h1. It is observed that for the case when the region with lower water depth
is nearer to the ice-covered surface, the reflection is higher and subsequently transmission is less. As T increases,
Kr decreases to attain a minimum value and then starts increasing. This may be due to the change in phase of the
reflected and transmitted waves. The reverse pattern is observed for Kt . It may be noted that in this case, the wave
reflection is due to the abrupt change in the bottom topography as the ice-thickness is constant in both regions.

Table 1 Numerical check
for the energy relation
considering h2/h1 = 0.75
and E2/E1 = 1.0 with
T = 15 s

d2/d1 Kr Kt γ K 2
r + γ K 2

t

1.0 0.021554 0.973841 1.07451 1.01949
2.0 0.0996397 0.967477 1.08199 1.02269
3.0 0.931121 0.395638 1.1865 1.025271
4.0 0.982788 0.160043 1.18621 0.996256
5.0 0.915269 0.374003 1.18093 1.0029
6.0 0.914798 0.362066 1.17005 0.99024
7.0 0.940906 0.284258 1.15361 0.978519
8.0 0.961608 0.212024 1.13222 0.975588
9.0 0.974819 0.156699 1.10693 0.977452

10.0 0.983245 0.115129 1.07898 0.981072

Table 2 Numerical check
for the energy relation
considering d2/d1 = 5 and
E2/E1 = 1.0 with T = 15 s

h2/h1 Kr Kt γ K 2
r + γ K 2

t

0.05 1.00119 0.011952 16.6344 1.00475
0.25 0.965301 0.240528 3.20917 1.011747
0.50 0.966788 0.181746 1.60893 0.987825
0.75 0.915269 0.374003 1.18093 1.0029
1.0 0.937803 0.360006 1.00854 1.01019
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Table 3 Numerical check
for the energy relation
considering d2/d1 = 1,
h2/h1 = 0.75 and
E2/E1 = 1.0

T (in sec) Kr Kt γ K 2
r + γ K 2

t

5.0 0.0443708 1.00989 1.0 1.02185
7.5 0.0227061 0.990215 1.00021 0.981252

10.0 0.00850891 0.984246 1.01608 0.98439
12.5 0.0320499 0.974052 1.09436 1.03933
15.0 0.021554 0.973841 1.07451 1.01949

Fig. 2 Variation of Kr and Kt versus T for different h2/h1 with d2/d1 = 1.0

Fig. 3 Variation of Kr and Kt versus T for different d2/d1 with h2/h1 = 0.75

Figure 3 shows the variation of Kr and Kt versus the wave period for different values of the thickness ratio d2/d1.
Here, it may be noted that there is a significant change in the reflection and transmission coefficients due to the
abrupt change in thickness of the floating ice-sheets compared to the case d2 = d1. The reflection coefficient Kr is
significantly higher when there is an abrupt change in water depth along with a change in thickness of the floating
ice-sheet. This is due to the concentration of surface waves at the free surface. Thus, a change in the thickness of
the structure is more effective compared to a change in water depth. Here, Kr initially increases with an increase in
wave period T and attains a maximum and then decreases sharply to attain a minimum. In the intermediate range
of wave periods from 5 to 12 s, the wave reflection is much less and remains almost unchanged. For wave periods
longer than 12 s, Kr increases with T .

Figure 4 shows the change in the deflection of the ice-sheet ζ for different values of d2/d1. It is observed that,
due to the scattering of the flexural gravity waves by the heterogeneity in the ice-sheet, as well as by the change
in the bottom topography, the wave height and wave length have increased in the transmitted region. However, the
vertical deflection decreases as the thickness of the ice-sheet increases.
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Fig. 4 Deflection of the ice-sheet ζ versus x (in me-
ter) for various values of d2/d1 with h2/h1 = 0.75,
T = 5 s

Fig. 5 Deflection of the ice-sheet ζ versus x (in meter) for var-
ious values of h2/h1 with d2/d1 = 1.0 T = 5 s

The deflection of the ice-sheet ζ versus x is plotted for different values of h2/h1 in Fig. 5 for the scattering of
plane flexural gravity waves due to the change in water depth. It is observed that wave amplitude decreases in the
transmitted region and it is comparatively higher in the region from which it is propagating. The increase in wave
height may be due to the interaction of the incident waves with the reflected waves. However, with an increase in
depth ratio h2/h1, the vertical-displacement amplitude increases.

In Fig. 6, the ratio between the wave heights H2/H1 is plotted versus T for different values of h2/h1 in the
case of shoaling. It is clear from Fig. 6 that the incident wave height is greater than the transmitted wave height
for waves with smaller wave periods. Further, as the wave period increases, the transmitted wave-height increases.
For an intermediate value of the wave period, the incident and transmitted wave heights become equal. Afterwards
the transmitted wave height becomes greater than the incident wave height. However, with an increase in h2/h1,
H2/H1 increases for waves with relatively short time periods, whereas H2/H1 decreases with increasing h2/h1 for
long period waves.

Figure 7 shows the variation of H2/H1 versus h2/h1 for different values of d2/d1 in the case of shoaling. It can
be seen that, when d2/d1 = 1.0, H2/H1 approaches 1 as h2/h1 approaches 1. This is obvious, as there will be no
wave transformation when there is no change in the water depth as well as the material property of the ice-sheet.
As h2/h1 increases, initially H2/H1 starts increasing and attains a maximum value. After attaining the maximum,
H2/H1 decreases gradually with increasing h2/h1.

In Figs. 8 and 9, the deflections of the ice-sheet ζ versus x are plotted for different values of h2/h1 and d2/d1,
respectively, in the case of no reflection. Here, it is observed that when the waves propagate from higher to lower
depth regions, the wave height increases and the wave length decreases. As h2 increases, i.e., the bottom is far away
from the upper surface, the wave height decreases. Figure 9 clearly shows that, as the thickness of the ice-sheet
increases in the lower-depth region, the deflection of the ice-sheet decreases. This is so because, as the ice-thickness
increases, the rigidity of the ice-sheet also increases resulting in less deflection.

Figure 10 shows the variation of the reflection and transmission coefficients Kr and Kt versus h2/h1 for different
values of ice-thickness ratio d2/d1 in the case of reflection. It is observed that Kr and Kt initially increases with
increasing h2/h1 to attain a maximum and then gradually decreases. In case d2/d1 = 1, as h2/h1 approaches 1,
Kr tends to 0 and Kt tends to 1. It is also observed that, as d2/d1 decreases from 1, i.e., difference between the
thickness of the two ice-sheets increases, Kr and Kt also increase. The graph for Kt in Fig. 10 shows a similar
pattern as that of H2/H1 in Fig. 7, but the numerical values are higher in Fig. 7, which is when there is no reflection.
This is because a part of the wave energy is reflected by the step wall.
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Fig. 6 H2/H1 versus T for different h2/h1 with
d2/d1 = 1.0 in the case of shoaling

Fig. 7 H2/H1 versus h2/h1 for different d2/d1 with time period
T = 10 s in the case of shoaling

Fig. 8 Deflection of the ice-sheet ζ versus x (in me-
ter) for various values of h2/h1 with d2/d1 = 1.0,
T = 10 s in the case of shoaling

Fig. 9 Deflection of the ice-sheet ζ versus x (in meter) for var-
ious values of d2/d1 with h2/h1 = 0.2, T = 10 s in the case of
shoaling

Figure 11 shows the variation of Kr and Kt versus the wave period T for different values of h2/h1. As T increases,
Kr decreases and attains a minimum of zero at a particular time. After attaining the minimum, Kr increases with
T . On the other hand, Kt increases with increasing wave period. It is also observed that the general behavior of Kr

and Kt as h2/h1 increases in the case of shallow water is similar in nature with Kr and Kt in finite water depth as
shown in Fig. 2. Further, the pattern of Kt is similar in nature with H2/H1 as in Fig. 6 but the numerical value is
less due to the wave transformation by reflection.

Figures 12 and 13 show the variation of ζ versus x for different values of h2/h1 and d2/d1, respectively, for wave
reflection in shallow water. The graphs show that the wave length in the transmitted region is less than that in the
incident-wave region. On the other hand, the wave heights remain almost the same in both incident and transmitted
regions. Further, an increase in the ice-thickness reduces the deflection of the ice-sheet.
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Fig. 10 Kr and Kt versus h2/h1 for different d2/d1
with time period T = 10 s in the case of reflection

Fig. 11 Kr and Kt versus T for different h2/h1 with d2/d1 =
1.0 in the case of reflection

Fig. 12 Deflection of the ice-sheet ζ versus x (in me-
ter) for various values of h2/h1 with d2/d1 = 1.0,
T = 10 s in the case of reflection

Fig. 13 Deflection of the ice-sheet ζ versus x (in meter) for var-
ious values of d2/d1 with h2/h1 = 0.2, T = 10 s in the case of
reflection

5 Conclusions

In the present paper, energy relations for plane flexural gravity waves have been derived based on the law of con-
servation of energy flux. Further, the same relations are rederived by direct application of Green’s second identity.
The total energy density for flexural gravity waves is a combination of kinetic energy, potential energy and surface
energy. The surface energy in this case is the strain energy due to the existence of the floating ice-sheet which is
an additional surface apart from the free surface of water. Wave transformation due to change in water depth and
heterogeneities in the floating ice has been investigated using the expansion formula for flexural gravity wavemaker
problems. An alternate derivation of the expansion formula will be given in Appendix. The heterogeneity in the
floating structure includes a change in the thickness of the ice-sheet along with the rigidity of the structure and is
very common in the cold regions of the Arctic and Antarctic oceans. The change in the thickness results in variable
flexural rigidity of the ice that leads to transformation of wave propagation. The effect of shoaling and reflection
of plane flexural gravity waves has been analyzed based on the linearised theory of shallow-water waves. Explicit
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expressions were obtained for the wave-height ratios for both shoaling and reflection. The results can be used as
a numerical check for computational analysis of wave transformations due to complex bottom topography and
structural heterogeneities.

In the present context, we discussed in detail the reflection and transmission coefficients and the deflections of
the ice-sheet. We observed that, for waves with longer wave lengths, the reflection is more than for waves with
shorter wave lengths. The numerical results also show that, due to the abrupt change in the bottom topography
and structural heterogeneity of the floating ice-sheet, there is a significant change in the amplitude and length of
the flexural gravity waves. These changes will lead to cracks in floating ice-sheets which, in turn, may break into
small pieces. The results will be of importance in the field of Ocean Engineering in the design of mega floats and
Cold Region Science and Technology apart from the application of the present method in different branches of
Mathematical Physics.

Appendix: Alternate derivation of the generalized expansion formula

In this appendix, we provide an alternate derivation of the expansion formula associated with flexural gravity waves
in finite water depth as in [6]. Karmakar et al. [25] presented the alternate derivation of the expansion formula for
flexural gravity waves for infinite depth. In this case, the velocity potential φ(x, y) satisfies the Laplace equation as
in (1) in the semi-infinite strip 0 < x < ∞, 0 < y < h. The boundary condition on the structural boundary y = 0
is of the form

L(∂x )φy + M(∂x )φ = 0 on y = 0, 0 < x < ∞, (A1)

where L and M are the linear differential operators of the form L(∂x ) = ∑n0
n=0 cn∂x2n , M(∂x ) = ∑m0

n=0 dn∂x2n

with cn’s and dn’s are unknown constants. The far-field radiation condition is of the form

φ(x, y) ∼ multiple of f0(y)e
ik0x as x → ∞, (A2)

where k0 satisfies a relation in k given by

m0∑
n=0

(−1)ndnk2n = k
n0∑

n=0

(−1)ncnk2n tanh kh, (A3)

with f0(y) = cosh k0(h−y)
cosh k0h . The bottom boundary condition is given by

φy = 0 on y = h. (A4)

Finally, the velocity potential φ(x, y), on the vertical boundary at x = 0 satisfies the boundary condition

φ(x, y) = u(y) on x = 0. (A5)

To derive the general form of the expansion formula for φ(x, y) satisfying (1) along with conditions (A1), (A4),
and (A5) for m0 = n0 = 2, we substitute

φ(x, y) = A0 f0(y)e
ik0x + ψ(x, y). (A6)

Using the Fourier-sine transform of ψ(x, y) as defined by

ψ̂s(ξ, y) =
∫ ∞

0
ψ(x, y) sin ξ x dx, (A7)

we convert the BVP in ψ(x, y) to a BVP of Sturm–Liouville type associated with an ordinary differential equation
(ODE) in ψ̂s(ξ, y). The solution of the ODE is derived by a Green’s function technique and is given by

ψ̂s(ξ, y) = −S(ξ, y)

H(ξ)

∫ h

0
cosh{ξ(h − t)}g(ξ, t)dt − 1

ξ

∫ y

0
sinh{ξ(t − y)}g(ξ, t)dt + f̂ (ξ)

(d0 − d1k2
n + d2k4

n)
, (A8)
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where

S(ξ, y) = ξ(c0 − c1ξ
2 + c2ξ

4) cosh ξ y − (d0 − d1ξ
2 + d2ξ

4) sinh ξ y,

H(ξ) = ξ(c0 − c1ξ
2 + c2ξ

4) sinh ξh − (d0 − d1ξ
2 + d2ξ

4) cosh ξh,

g(ξ, y) = −ξ{u(y)− A0 f0(y)} + ξ2 f̂ (ξ)/{(d0 − d1k2
n + d2k4

n)},
f̂ (ξ) = ξ(c2ξ

2u′(0)+ c2u′′′(0)− c1u′(0))+ A0k0ξ{c2(ξ
2 + k2

0)− c1} tanh k0h

+ξ(d2ξ
2u(0)+ d2u′′(0)− d1u(0))+ A0ξ{d2(ξ

2 + k2
0)− d1}.

We observe, that H(ξ) = 0 has a real positive root at ξ = k0 (say) which suggests that the function ψ̂s(ξ, y) has
a singularity at ξ = k0 on the positive real axis. However, ψ̂s(ξ, y) being the Fourier-sine transform of a function
that cannot have a singularity on the line ξ > 0, this yields

lim
ξ→ k0

(ξ − k0)ψ̂s(ξ, y) = 0. (A9)

Simplification of Eq. (A9) gives rise to the constant An with n = 0; this is given by

An = 1

Cn

∫ h

0
u(t) fn(t) dt + 1

Cn(d0 − d1k2
n + d2k4

n)
[{−c2u′′′(0)+ (c1 − c2k2

n)u
′(0)}kn

+{−d2u′′(0)+ (d1 − d2k2
n)u(0)}kn] tanh knh (A10)

with

Cn = h

2 cosh2 knh
+ (c0 − 3c1k2

n + 5c2k4
n) tanh knh

2kn(c0 − c1k2
n + c2k4

n)
+ (d1 − 2d2k2

n)

(c0 − c1k2
n + c2k4

n)
. (A11)

Fourier-sine inversion of ψ̂s(ξ, y) yields

ψ(x, y) = 2

π

∫ ∞

0
ψ̂s(ξ, y) sin ξ xdξ. (A12)

Next, by writing sin ξ x as (eiξ x − e−iξ x )/2i in (A12), we rotate the contour along the positive imaginary axis for
the integral involving eiξ x and along the negative imaginary axis for the integral involving e−iξ x . Then, using the
Cauchy residue theorem of complex-function theory, we can rewrite (A12) as

ψ(x, y) = AI f I (y)e
ikI x + AI I f I I (y)e

−ikI I x +
∞∑

n=1

An fn(y)e
−kn x , (A13)

where AI , AI I and An are as in (A10) with kn = kn for n = I, I I and kn = ikn for n = 1, 2, . . . . Substituting
for ψ(x, y) from relation (A13) and An from relation (A10) in the relation (A6), the required expansion formula is
obtained.
NB: It may be noted that the fn satisfy the orthogonal mode-coupling relation as given by

〈 fn(y), fm(y)〉 =
∫ h

0
fn(y) fm(y)dy − c j1 f ′

n(0) f ′
m(0)

(d j0 − d j1k2
jn + d j2k4

jn)
+ c j2{ f ′

n(0) f ′′′
m (0)+ f ′′′

n (0) f ′
m(0)}

(d j0 − d j1k2
jn + d j2k4

jn)

+ d j1 fn(0) fm(0)

(c j0 − c j1k2
jn + c j2k4

jn)
− d j2{ f ′

n(0) f ′′
m(0)+ f ′′

n (0) f ′
m(0)}

(c j0 − c j1k2
jn + c j2k4

jn)
(A14)

with

〈 fn(y), fm(y)〉 =
{

0 for m 	= n,
Cn for m = n.

(A15)

The above mode-coupling relation is a generalization of the one discussed in [6] and is equivalent to that derived by
Lawrie and Abrahams [21]. It may be noted that the general expansion formulae can be derived in a straightforward
manner once the root behavior of the dispersion relation as in (A3) is known.
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